1. Creation and annihilation operators

Proof the following relations for the fermonic creation \hat{a}_i^\dagger and annihilation \hat{a}_i operators and the particle number operator $\hat{n}_i = \hat{a}_i^\dagger \hat{a}_i$:

- $\hat{n}_i^2 = \hat{n}_i$
- $\hat{a}_i \hat{n}_i = \hat{a}_i$
- $\hat{a}_i^\dagger \hat{n}_i = 0$
- $\hat{n}_i \hat{a}_i = 0$
- $\hat{n}_i \hat{a}_i^\dagger = \hat{a}_i^\dagger$

2. Matrix elements

Calculate the matrix element of bosonic and fermionic operators over the vacuum state $|0\rangle$:

$$< 0| \hat{a}_i \hat{a}_j \hat{a}_k^\dagger \hat{a}_m^\dagger |0\rangle$$

3. Coulomb Interaction

Using the general representation of the two-particle interaction in the field operators:

$$H_{\text{int}} = \frac{1}{2} \int d^3r d^3r' \hat{\Psi}(\vec{r})^\dagger \hat{\Psi}(\vec{r'})^\dagger U(\vec{r} - \vec{r'}) \hat{\Psi}(\vec{r'}) \hat{\Psi}(\vec{r}).$$

show that the Coulomb interaction $U = \frac{1}{(\vec{r} - \vec{r'})}$ (in a.u.) for spinless fermions has the following form in impulsive \vec{k}-space:

$$H_{\text{int}} = \frac{1}{2V} \sum_{\vec{k}, \vec{k}', \vec{q}} U_{\vec{q}} \hat{a}_{\vec{k} + \vec{q}}^\dagger \hat{a}_{\vec{k}'}^\dagger \hat{a}_{\vec{k}'} \hat{a}_{\vec{k} + \vec{q}}$$